AAT IP Suite m

AAT-IP Suite for ITCH-OUCH Demo Instruction

L © 1= Y = O O PP P PO P RPPTPPPPON 2
2 Target SYSIEM SEIUD ....eiiiiiiiiiii ettt e e R b e et ba e e s e e e s aree s 4
3 HOSE SYSIEM SEIUPD ...ttt ettt et e e e s ke e e e o b e e e e e e b e e e e e b e e e e e s br e e e e arreeeeaa 6
4 RUN AAT ITCH/OUGCH DEIMO ......veiiiiieiiie ettt ettt ettt ekt e st e s st e e bt e e ebe e e sm bt e e sabeeanbe e e abbe e s beeesabeesnneas 10
4.1 ITCH-OUCH Market SErVEr SEIUP ......cuuiiiiiiieii ittt e e e s et ee e e e e e e e s snneneeeas 11
4.2 Host System INtIaliZation ...........cooiiiiiiii e s e a e e e e 13
4.3 Market Data TranSIMISSION ........ccuueiiiiiiiie ettt sttt e e st e e s s e e s s e e e s annre e e s nnnneees 15
N I =T [ o oY T AN A=Y o TN = o PSS 16
4.5 Trading on HOSt SOMIWAIE .......ouuiiiiiiiii e e e e s e s e e e e e s s et e e e e e e e s e nnreees 19
5  Update HardWare Vi PCIE .........coiii ittt e e e e s e et e e e e e e s e s st b e e e e e e e e e e s sanraaneeeaens 20
5.1 MCS FilE CrEation ...cc.eeiiiiieiiiie ittt ettt ekttt ke e st et e s b et e s st e e b e e e sabe e e be e e sbneesabeeennneeanneeen 20
5.2 MCS File Programming Via PCIe.........ccoouiiiiiiiiiiiiiee ettt e et esanee e 21
B REVISION HISTOY ....ciiiiiiiiiiii ettt bt e s bttt e s bbbt e e s bbbt e e s bbbt e e e bbbt e e s enbb e e e s snnreeas 23

aat-ips-itch-ouch-instruction-amd -1- © Design Gateway Co.,Ltd



AAT IP Suite M

AAT-IP Suite for ITCH-OUCH Demo Instruction

Rev1.00 26-Jan-2026

1 Overview

The Accelerated Algorithmic Trading IP Suite (AAT-IPS) provides an ultra-low-latency trading solution that leverages
FPGA technology to accelerate market data processing and order execution. This demo, built on AAT-IPS, minimizes
network and processing latency to achieve deterministic, high-performance trading behavior. It targets the
ITCH/OUCH protocol pair, originally defined by NASDAQ for market data dissemination and order entry, and
demonstrates a complete FPGA-based trading workflow. This includes ITCH market data reception, order book
maintenance, pricing decision logic, and OUCH order transmission, all optimized for ultra-low latency operation.

A key component of the AAT-IPS framework is the pricing engine, which is implemented using High-Level Synthesis
(HLS). Trading strategies are developed using a C/C++-style coding model, allowing users to rapidly modify and
evaluate custom logic without redesigning the underlying hardware architecture. This approach significantly reduces
development time and enables fast iteration from strategy development to live trading evaluation.

The demo runs on the Alveo X3522 accelerator card and demonstrates system performance over a 10G Ethernet
connection. The X3522 is equipped with two DSFP28 ports, each capable of supporting up to two independent 10G
Ethernet channels.

In this demo, two 10G Ethernet channels are used to support both UDP and TCP traffic, with the following roles:
1) Market Data Channel (UDP): Transmits sample market data using the ITCH protocol over UDP.
2) Trading Control Channel (TCP):

e Receives orderbook snapshot data using ITCH over TCP.
e Transmits order messages using the OUCH protocol over TCP.

To set up the demo system, a target PC equipped with two 10G Ethernet ports is required. The demo running on the
Alveo accelerator card is launched using the “aat-itch-ouch” application. During operation, sample market data is
injected into the system using the “itch-feed-replay” application, while order reception and market interaction are
handled by the “itch-feed-replay” application.

The following hardware and software environment was used to produce the results presented in this document.

Hardware Environment

1) Supported Alveo accelerator card: X3522
2) Host system for Alveo accelerator card:

e CPU: Intel Core i7-14700K
e Motherboard: MSI Z790-P

3) Programming cable: Alveo Debug Kit (ADK2)
4) Ethernet connectivity for X3522:

o Two 10G Ethernet channels using 2 x SFP+ Active Optical Cable (AOC):
https://www.10gtek.com/10gsfp+aoc

e Four 10G Ethernet channels using 2 x 50G DSFP breakout DAC:
https://ascentoptics.com/product/50g-dsfp-to-2x-25g-sfp28-breakout-dac-1m.html

5) Target system network interface: Two 10G Ethernet ports using a 10G Ethernet NIC

Software Environment

6) Vivado Design Suite installed on the host system to program the Alveo card

7) Target system configuration:

Operating System: Ubuntu 22.04 LTS Server

Market Emulator: itch-ouch-market

Packet Replay Tool: itch-feed-replay

Market Data: Sample market data file (itch-market-data.pcap)

aat-ips-itch-ouch-instruction-amd -2- © Design Gateway Co.,Ltd


https://www.10gtek.com/10gsfp+aoc
https://ascentoptics.com/product/50g-dsfp-to-2x-25g-sfp28-breakout-dac-1m.html

AAT IP Suite

Host System with Alveo X3522

micro-USB cable

2xSFP+ AOC cable ‘

aat-ips-itch-ouch-instruction-amd

10G Ethernet Card

mex cable

with two 10GbE channels

SFP+#2
(192.168.20.100)

Target system
(Linux OS)

HIH]

‘itch-feed

-replay’ and
‘itch-ouch-market’

Figure 1 AAT-IP Suite for ITCH-OUCH Demo Using Alveo X3522 Card

© Design Gateway Co.,Ltd



AAT IP Suite II:!!J!Cii

2 Target System Setup

This section provides step-by-step instructions for preparing the target system, which is equipped with two 10G
Ethernet ports, to exchange market data and order packets with the Alveo accelerator card. The target system runs
Ubuntu 22.04 LTS Server OS. Setup involves identifying the correct network interfaces and assigning IP addresses
to the two 10G Ethernet ports connected to the Alveo card.

First, identify the logical interface names of the two 10G Ethernet ports connected to SFP+#1 and SFP+#2. These
logical names may vary depending on the test environment, so it is important to configure the correct IP address for
the SFP+#1 and SFP+#2 connections.

1) Open a Linux terminal and use the following command to list the logical names of the 10G Ethernet ports:
“Ishw -C network”.

Target Console + : Input by user
4 : Output to user

tkas—user@dg—turnkeyl:~$Isudo lshw -C network ]

*—network:0 ‘\\\ - -
description: Ethernet interface E“ﬂﬂayaIBtOf_
product: MT2894 Family [ConnectX-6 Lx] network connection
vendor: Mellanox Technologies
physical id: 0
bus info: pci@0000:06:00.0
[logical name: enpés0fOnp0 |— Logical name of 10G no.1
version: 00
serial: 08:cO:eb:le:73:3e
capacity: 25Gbit/s
width: 64 bits
clock: 33MHz
capabilities: pciexpress vpd msix pm bus_mas
configuration: autonegotiation=on broadcast=

ink=no multicast=yes
resources: iomemory:600-5ff irq:16 memory:60

*—network:1
description: Ethernet interface
product: MT2894 Family [ConnectX-6 Lx]
vendor: Mellanox Technologies
physical id: 0.1
bus info: pci@0000:06:00.1

| logical name: enp6s0flnpl |— Logical name of 10G no.2
version: 00

serial: 08:cO:eb:le:73:3f
capacity: 25Gbit/s

width: 64 bits

clock: 33MHz
capabilities: pciexpress vpd msix pm bus_mas

Figure 2 Display Logical Name of 10G Ethernet Ports

The command output displays detailed information about each network interface. For example, Figure 2 shows
logical interface names such as “enp6s0fOnp0” for SFP+#1 and “enp6s0f1np1” for SFP+#2.

aat-ips-itch-ouch-instruction-amd -4 - © Design Gateway Co.,Ltd



AAT IP Suite

2) Configure the IP address for each Ethernet port using the “ifconfig” command.

e Set SFP+#1 (enp6s0fOnp0) to “192.168.10.100".
o Set SFP+#2 (enp6s0f1np1) to “192.168.20.100".

Configure the network mask as 255.255.255.0 (i.e., /24 subnet) for both interfaces, as shown in Figure 3.

Target Console

tkas—user@dg—turnkeyl:~$|sud0 ifconfig enp6s0£f0npl 192.168.10.100{24|
tkas—user@dg—turnkeyl:~$|sudo ifconfig enp6s0flnpl 192.168.20.100!24L

Figure 3 Configure IP Address and Netmask

Set IP address and netmask
to enp6s0fOnp0 (SFP+#1)

Set IP address and netmask

to enp6s0finp1 (SFP+#2)

3) After assigning the IP addresses and netmask, use the “ifconfig” command to confirm that both Ethernet ports

are correctly configured.

Target Console

tkas-user@dg-turnkeyl:~$

Confirm IP address

enpbs npOl: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
Iinet 192.168.10.100 netmask 255.255.255.0] broadcast 192.168.10.255

¢ : Input by user
¢ : Output to user

RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0

ether 08:c0O:eb:le:73:3e txqueuelen 1000\\<ifhernet)

IP address and netmask
TX packets 5 bytes 300 (300.0 B) of enp6s0fOnp0

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

|enp6sOf1np1h flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
Iinet 192.168.20.100 netmask 255.255.255.0] broadcast 192.168.20.255

ether 08:c0:eb:1le:73:3f txqueuelen 1000 \*sfhernet)

RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 300 (300.0 B)

IP address and netmask
of enp6s0finp1

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Figure 4 Verify IP Address and Netmask Setting

Ensure that both Ethernet ports are correctly assigned with their respective IP addresses and netmask values.

aat-ips-itch-ouch-instruction-amd -5-

© Design Gateway Co.,Ltd



This section outlines the steps to prepare the host system equipped with an Alveo accelerator card for running the
AAT-IPS for ITCH-OUCH demo.

1) The AAT-IPS ITCH/OUCH demo requires packet transfer over PCle for Alveo card configuration and data
exchange. Therefore, the QDMA DPDK driver must be installed on the host system. The installation guide is
available on the AMD website under “Building QDMA DPDK Software”:

https://xilinx.github.io/dma _ip _drivers/master/QDMA/DPDK/html/build.html

2) Connect Ethernet and programming cables between Alveo card and the target system. The cabling setup may
vary depending on the installed Alveo card. The following steps describe the configuration for the Alveo X3522.

AAT IP Suite

3 Host System Setup

i) Insert two SFP+ transceivers into the SFP+ connectors on the Alveo accelerator card.

i) Connect SFP+#1 (IP: 192.168.10.100) and SFP+#2 (IP: 192.168.20.100) to the two 10G Ethernet ports on
the target system.

iiiy For programming the card, connect the Flex cable from the Alveo accelerator card to the Alveo Debug Kit
(ADK2). Ensure the Flex cable is securely connected.

Alveo X3552 Card

i Flex cable

SFP+#1 SFP+#2

Figure 5 SFP+ and Flex Cable Connection on Alveo X3522 Card

aat-ips-itch-ouch-instruction-amd -6- © Design Gateway Co.,Ltd


https://xilinx.github.io/dma_ip_drivers/master/QDMA/DPDK/html/build.html

AAT IP Suite

3) Use the Vivado Hardware Manager to program the Alveo card with the required bitstream, as illustrated in Figure
6.

HARDWARE MANAGER - unconnected

‘ Eile Flow Tools Window Help

Q- Qui

o No hardware target is open.

Open target

| &

Auto Connect

Hardware

VIVADO'

ML Editions

Quick Start

Hardware 2 00X
Create Project > Q = = o
| Open Project > Status
| Open Example Project > Mhost (1 Connected

1

| ii. Open target -> Auto Connect

—

Open New Target...

HARDWARE MAI

Ihost/xilinx_tcfixiling50771133354GAA

xilinx_teffXiling50771133354C Open

xcu26_ux35_0 (2) Programmed

[iii. Right click on FPGA device |
—

iE SysMon (System Monitor) Hardware Device Properties...
TaSkS A g L I Program Device... |
| i. Click Open Hardware Manager vertyoevce.. | jv, Click Program device

Manage IP > C  Refresh Device

I Open Hardware Manager > I Show Bus Plot...
Vivado Store > Add Configuration Memory Device...

! < Boot frem Configuration Memory Device
¢ Prol Device X

Select a bitstream programming file and download it to
your hardwar vice. Yi n ionalk s

v. Click “...” to select programming
file (AAT_ITCH_OUCH_X3522.bit)

Bitstream file: |/AAT_ITCH_OUCH_X3522.bi( "

Debug probes file:

[-]
vi. Click Program button to ‘
start FPGA programming
_

Figure 6 Program Alveo by Vivado Tool

aat-ips-itch-ouch-instruction-amd -7- © Design Gateway Co.,Ltd



AAT IP Suite

4) Warm reboot the host system and verify that the Alveo card is correctly enumerated by the PCle subsystem
using the “Ispci” command.

Ubuntu console

tkas—user@dg—turnkeyl:~$|lspc1I

00:00.0 Host bridge: Intel Corporation Device 4c43 (rev 01)

00:01.0 PCI bridge: Intel Corporation Device 4c01 (rev 01)

00:02.0 VGA compatible controller: Intel Corporation RocketLake-S GT1 [UHD Graphics 750] (rev 04)
00:06.0 PCI bridge: Intel Corporation Device 4c09 (rev 01)

00:14.0 USB controller: Intel Corporation Tiger Lake-H USB 3.2 Gen 2x1 xHCI Host Controller (rev 11)
00:14.2 RAM memory: Intel Corporation Tiger Lake-H Shared SRAM (rev 11)

00:15.0 Serial bus controller: Intel Corporation Tiger Lake-H Serial IO I2C Controller #0 (rev 11)
00:15.1 Serial bus controller: Intel Corporation Device 43e9 (rev 11)

00:16.0 Communication controller: Intel Corporation Tiger Lake-H Management Engine Interface (rev 11)
00:17.0 SATA controller: Intel Corporation Device 43d2 (rev 11)

00:1b.0 PCI bridge: Intel Corporation Device 43cO (rev 11)

00:1b.4 PCI bridge: Intel Corporation Device 43c4 (rev 11)

00:1c.0 PCI bridge: Intel Corporation Device 43b8 (rev 11)

00:1c.4 PCI bridge: Intel Corporation Tiger Lake-H PCI Express Root Port #5 (rev 11)

00:1d.0 PCI bridge: Intel Corporation Tiger Lake-H PCI Express Root Port #9 (rev 11)

00:1f.0 ISA bridge: Intel Corporation Device 4385 (rev 11)

00:1£.3 Audio device: Intel Cornaration Ticer Lake-H HD Aundia Cantraller (rev 11)

00:1f.4 sMBus: Int The AAT-IPS demo is “Network controller: Xilinx Corporation Device 903f”

00:1£.5 Serii;/pdf CTONTIoIIer: INtel Corporation I1ger Lake—-H SPI ctontroller (rev 11)

00:1f.6 Etherpet controller: Intel Corporation Ethernet Connection (14) I219-V (rev 11)

IL:% .0 Network controller: Xilinx Corporation Device 903f I

02:00.0 Non-Volatile memory controller: Sandisk Corp WD Blue SN550 NVMe SSD (rev 01)

04:00.0 Non-Volatile memory controller: Sandisk Corp WD Black 2018/SN750 / PC SN720 NVMe SSD
06:00.0 Ethernet controller: Mellanox Technologies MT2894 Family [ConnectX-6 Lx]

06:00.1 Ethernet controller: Mellanox Technologies MT2894 Family [ConnectX-6 Lx]
tkas—user@dg-turnkeyl:~$

Figure 7 Output of the “Ispci” Command After Programming the Alveo Card
The console should display “Network controller: Xilinx Corporation Device 903f", as shown in Figure 7.
5) Bind the previously installed DPDK driver from step (1) to the Alveo card on the host system.

i) Navigate to the “usertools” directory within the DPDK installation path:
>> cd <DPDK directory>/dpdk-20.11/usertools

i) Use the following command to bind the vfio-pci driver to the Alveo card:
>> sudo ./dpdk-devbind.py -b vfio-pci 01:00.0

6) Boot the AAT-IPS for ITCH-OUCH demo on the Alveo card by executing the “aat-itch-ouch” application.

i) Navigate to the “download” directory:
>> cd <download directory>

i) Execute the application:
>> sudo ./software/aat-itch-ouch

After execution, the DPDK and AAT applications will initialize successfully, as shown in Figure 8.

aat-ips-itch-ouch-instruction-amd -8- © Design Gateway Co.,Ltd



AAT IP Suite

Host console

Start Application

4 Input by user
4 : Output to user

tkas—user@dg—turnkeyl:~/AAT_ITCH—OUCH_Config_XS522$|sudo ./software/aat—itch—ouchl

EAL: No legacy callbacks,
Initialise AAT

EAL: Detected 16 lcore(s)

EAL: Detected 1 NUMA nodes

EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'VA'

EAL: No available hugepages reported in hugepages-2048kB
EAL: Probing VFIO support...

EAL: VFIO support initialized

EAL: Invalid NUMA socket, default to 0

EAL: using IOMMU type 1 (Type 1)

EAL: Probe PCI driver: net_gdma (10ee:9048) device: 0000:01:00.0 (socket 0)
PMD: QDMA PMD VERSION: 2020.2.1

legacy socket not created

>>

i Initialize DPDK and AAT

Figure 8 Status Displayed After Executing the Demo Application on the Host System

aat-ips-itch-ouch-instruction-amd

© Design Gateway Co.,Ltd



AAT IP Suite

4 Run AAT ITCH/OUCH Demo

In a price-driven trading environment, the trading workflow consists of three logical sessions: Glimpse, Live Feed,
and Order Entry. Each session serves a distinct role in the overall trading process.

e The Glimpse session is used to retrieve an initial snapshot of the order book, allowing the system to establish
the current market state before trading begins.

e The Live Feed session continuously delivers real-time market data, enabling the system to monitor price
movements and trigger trading decisions.

e The Order Entry session is responsible for submitting buy and sell orders to the market based on the pricing
decisions generated by the trading logic.

The demo executes these sessions in the sequence illustrated in Figure 9.

+ : Glimpse Session
4 : Order Entry Session
+ : Live Feed Session

ITCH-OUCH Market Server AAT Client
. _ glimpselogn—" |
'__——————Loginaccept———_____,_
o [ ——————0rderbook snapsh b
Get Snapshot _ Pene ™
—End of snapshot—— |
5 <« Orderentrylogin————
Login to Order Entry - .
——Loginaccept——— .
_____'___‘_— —Live Feed—— ]
Start Live Trading e
‘______——Order————_____
___"‘—-—LiVeFecu———_____
. -
-
-

Figure 9 Trading Process Diagram

1) The host system first connects to the ITCH-OUCH Market Server using the Glimpse session to obtain the latest
order book snapshot.

2) Next, the host system establishes the Order Entry session with the ITCH-OUCH Market Server to prepare for
order submission.

3) Trading begins when the host system subscribes to the Live Feed session of the ITCH-OUCH Market Data
Server. As real-time market data is received, the trading logic evaluates predefined conditions and automatically
submits orders through the Order Entry session when those conditions are met.

The following sections describe how to configure the Market Server using the provided test software, how to set up
the AAT-IPS to connect to the ITCH-OUCH Market Server through the three required sessions, and how to enable
order submission. They also explain how to select the simple trading algorithm implemented in hardware and, finally,
how to alternatively select and use the pricing algorithm implemented in the host software.

aat-ips-itch-ouch-instruction-amd -10 - © Design Gateway Co.,Ltd



AAT IP Suite m

4.1 ITCH-OUCH Market Server Setup

In this demo, the Glimpse and Order Entry sessions use TCP for data transfer, while the Live Feed session uses
UDP. The “itch-ouch-market” application emulates the ITCH-OUCH Market Server for both the Glimpse and Order
Entry sessions, and the “itch-feed-replay” application emulates the Live Feed session.

Before the host system logs in to the Market Server, the Market Server emulator must be started and ready to accept
TCP connections. The following steps describe how to set up the TCP connection.

1) On the target system console, execute the following command to start Market Server emulator:
>> [itch-ouch-market --bind <ip_address> --snapshot <snapshot_file>
The “itch-ouch-market” application requires two parameters:

e <ip_address> . IP address of network interface#2 (enp6s0f1np1) on the target system.
e <snapshot_file> : Path to the initial order book snapshot file used by the ITCH-OUCH Market Server.

+ : Input by user
Target Console + : Output to user

tkas—user@dg-turnkeyl:~/AAT_ITCH-OUCH_Config_X3522/marketserver$ ./itch-ouch-market
--bind|192.168.20.100] --snapshot snapshot.json
IP address of enp6s0finp1

Figure 10 Open Market Server

Figure 11 illustrates an example of the Market Server console output. The IP address and TCP port number
assigned to each session are displayed.

Target Console

+: Input by user
(Market Server Console)

+: Output to user

Itch-Ouch Market Server |[Glimpse: 192.168.20.100:9001|| |oE: 192.168.20.100:9002 |

Glimpse Server 4 AN Order Entry Server
Z AN
IP address and TCP port number IP address and TCP port number
of Glimpse session of Order Entry session

Figure 11 Market Server Emulator Console

aat-ips-itch-ouch-instruction-amd -11 - © Design Gateway Co.,Ltd



AAT IP Suite

2) On the host system, open the aat-itch-ouch console and execute the following command to establish a TCP

connection to the ITCH-OUCH Market Server:

>> run support/network.cfg

After executing the command, the Market Server emulator console displays the new connection status, as shown

in Figure 12.

Target Console
(Market Server Console)

[ Itch-Ouch Market Server | Glimpse: 192.168.20.100:9001 | OE: 192.168.20.100:9002

Glimpse Server

| [10:27:48] New connection from 192.168.20.200 |

\

Order Entry Server

|110:27:48] New connection from 192.168.20.200 |

TCP connection established

Figure 12 New Connection Status

The host system can also verify the TCP connection status from the aat-itch-ouch console using the following

command:

>> tcphandler getstatus

Host Console
(aatHitch-ouch Console)

¢ Input by user
¢ : Output to user

>>|tcphandler getstatus|

Target Port
Connection Status

R R L R T o +
| Glimpse | |
R R R e +
| Connection Requested | true |
| Target IP Address | 192.168.20.100 |
| Target Port | 9001 |
| Connection Status | |
T order Entry TCP connectionis I
Jrmemmmemen - successfully established |- ... __.___. +
Connection Requested | true
Target IP Address 192.168.20.100

|
| |
| 9002 |
I I
+

Figure 13 TCP Handler Status

aat-ips-itch-ouch-instruction-amd -12 -

© Design Gateway Co.,Ltd



AAT IP Suite

4.2 Host System Initialization

After Glimpse session and Order Entry TCP connections are successfully established, the “aat-itch-ouch” application
on the host system is used to retrieve the initial order book snapshot and complete the Order Entry login sequence,
as illustrated in Figure 9. Once these steps are completed, the system is ready to submit trading orders.

The following steps describe the host system initialization sequence.

1) On the aat-itch-ouch console, execute the following command to configure the login credentials and connect to
the Market Server using the Glimpse session:

>> run support/snapshot.cfg

After the script is executed, the Market Server emulator console indicates a successful login and confirms that
snapshot data has been sent, as shown in Figure 14.

Target Console
(Market Server Console)

Itch-Ouch Market Server | Glimpse: 192.168.20.100:9001 | OE: 192.168.20.100:9002

Glimpse Server

[10

127

:48]

Order Entry

New connection from 192.168.20.20

[10
[10

:128:
128

02]
02]

Login Req: User=dgway
Sent: Login Accepted

110
[10
[10

128
128
128

2]
02]
:02]

Sending Snapshot. ..
Sent: Snapshot Data (331 bytes)
Sent: End of Snapshot

| Send snapshot of orderbook |

0

Login packet received and
Login confirmation packet responded

[10:27:48] New connection from 192.168.20.200

Server

Figure 14 Market Server Console Upon Snapshot Request Completion

2) Verify that the snapshot data has been successfully applied to the order book in the Alveo card by running the
following command in the aat-itch-ouch console:

>> orderbook readdata

Figure 15 shows the order book state before and after the snapshot is received.

Host Console
(aatitch.ouch Console) | Before Snapshot Request ‘aat_i:‘:ﬂ,ﬁ::‘gﬂ:so'e) | After Snapshot Request +: Input by user
¢ : Output to user
>>[orderbook readdata] >>|orderbouk readdata
Symbol Index = @ 11 Timestamp = 0x0000000000000000 | Synbol Index = 0 I Timestamp = 6x0000000000000000 |
------------------------------------- e R CEEEEEEELELEEEEREEL, e e e e e e e eeeeeemeeeeeaeeeeeeeaeeeeaaaaanan
BID I ASK \ BID [ ASK |
------------------ L R it & L il L R | T
Quantity | Price I Price I Quantity I Quantity | Price 1 Price | Quantity
------------------ frercrssccerrssrssnfrerrerrrsrrrerrnrrsfrerrarcerrnarorrendy e
| 0] 0| 0 | 500 | 1000000 || 1000100 | 450 |
0| 01l 0| 0| 480 | 999500 || 1000200 | 430 |
0| 0] 0| 0| 450 | 999000 || 1000300 | 400 |
0| 01| 0| 0 | 420 | 998500 || 1000400 | 380 |
0] 0] 0 0| 400 | 993000 || 1600500 | 350 |
0| 0] 0| 0| 380 | 997500 || 1000600 | 330 |
0| 01| 0| 0 | 350 | 997000 || 1000700 | 300 |
0| 0] 0 0| 320 | 996500 || 1000800 | 280 |
| 0] 0| 0 | 300 | 996000 || 1000900 | 250 |
0| 01| 0| 0 | 280 | 995500 || 1001000 | 220 |
------------------ Ly L T T T PPN T TSP PO Y | - - e |

1
| OrderBook Table |

Figure 15 Orderbook Status Upon Snapshot Completion

aat-ips-itch-ouch-instruction-amd

- 13-

© Design Gateway Co.,Ltd



3) On the aat-itch-ouch console, run one of the following script files to select the pricing engine used to process
market data and generate trading orders. Two pricing-engine options are supported:

AAT IP Suite

e Use the “trade_on_card.cfg” script to select the hardware-based pricing engine implemented on the Alveo
card. This option minimizes latency between market data reception and order submission. The on-card
pricing engine includes a default trading algorithm that generates orders when predefined market conditions
are met. The trading algorithm and its parameters can be configured through the console, as described in
section 4.4.

>> run support/trade_on_card.cfg

e Use the “trade_on_host.cfg” script to select the software-based pricing engine running on the host system.
This option is suitable for more complex trading algorithms that require flexible software-based processing.

>> run support/trade_on_host.cfg.

4) After successful initialization, the Market Server console displays the Order Entry login status, as shown in Figure
16.

Host Console
(aat4itch-ouch Console)

Itch-Quch Market Server I Glimpse: 192.168.20.100:9001 | OE: 192.168.20.100:9002

Glimpse Server Order Entry Server
[10:27:48] New connection from 192.168.20.200 [10:27:48] New conggction frq& 192.168.20.200
[10:28:02] Legin Req: User=dgway [10:28:15] Login Req: User=dgway
[10:28:02] Sent: Login Accepted [10:28:15] Sent: Login Accepted
[10:28:02] Sending Snapshot...
[10:28:02) Sent: Snapshot Data (331 bytes)
[10:28:02] Sent: End of Snapshot

Login packet received and response
with Login confirmation packet

Figure 16 Market Server Console Upon Order Entry Log-in Completion

The Order Entry status can also be verified from the aat-itch-ouch console (the host system) by running the
following command:

>> orderentry getstatus

Host Console 4 : Input by user
(aat-itch-ouch Console) 4 : Output to user

>>|orderentry getstatus|

LR R PR, fo=m-crarmmmaccocccaaa- +
| Order Entry |
L T +
| Username 1 dgway |
| Request Session | |
| Request SeqNum | 60EE0EEEHEEEEEEEARREHE |
| Login Status | |LOGGED IN||
F-mmmmmmss s s s - - == - ====4
| Num Login Accepted Msg Logged in successfully 1]
| Num Login Rejected Msg | 0|
| Num Sequenced Data Msg | 0 |
| Num End Of Snapshot Msg 1 0|
| Num Unknown Msg | 0|
ommmcreammccccesarcameccccana- fo=m-crarmmcamcccacaaa- +

Figure 17 Order Entry Upon Log-in Completion

aat-ips-itch-ouch-instruction-amd -14 - © Design Gateway Co.,Ltd



AAT IP Suite

4.3 Market Data Transmission

To transmit sample market data during the Live Feed session, use the “itch-feed-replay” application on the target
system. Two terminal windows are required on the target system: one for the Market Server console and one for the
Live Feed console.

Follow the steps below to start market data transmission.

1) Onthe target system, open a second terminal window for the Live Feed session. Execute the following command
to transmit sample market data from a PCAP file using “itch-feed-replay”.

>> [itch-feed-replay <pcap_file> --bind <ip_address> --source-port <udp_port> --snapshot <snapshot_file>

The “itch-feed-replay” application requires four parameters.

e pcap_file : Path to the market data file in PCAP format used for Live Feed replay.
e ip_address : IP address of network interface#1 (enp6s0fOnp0) on the target system.
e udp_port : UDP port number used to transmit Live Feed market data.

e snapshot_file : Path to the initial order book snapshot file used by the Market Server.

+ : Input by user
Target Console#2 +: Output to user

tkas-user@dg-turnkeyl:~/AAT_ITCH-OUCH_Config_X3522/marketserver$ ./itch-feed-replay itch-market-data.pcap
--bind [192.168.10. --source-port 10000 --snapshot snapshot.json

| IP address of enp6s0fOnp0

Figure 18 itch-feed-replay Parameter
2) After executing the command, the Live Feed console displays two sub-windows:

e The left console decodes and displays the market data messages currently being transmitted to the host
system (from the PCAP file), including information such as message sequence number, order ID, and order
book actions.

e The right console displays the current state of the order book. This state should match the order book
decoded and maintained on the Alveo card.

Target Console#2
(Live Feed Console)
Market Data Tape Order Book
Time Seq 0ID Action Side Lvl Qty Price Lvl Bid Qty Bid Prc Ask Prc Ask Qty
14:01:27 81 1234 NEW BID & 188 998300 1 653 1000200 1000900 934
14:01:27 82 1234 ASK 1 958 1002300 2 313 1000100 1001200 362
14:01:27 83 1234 BID 8 0 998000} 3 671 1000000 1001400 200
14:01:27 84 1234 BID 1 117 999400 B 362 999900 1001500 786
14:01:27 85 1234 BID 1 983 999600 5 983 999600 1001800 958
14:01:27 86 1234 ASK 1 958 1001800 6 117 999400 1002300 958
14:01:27 87 1234 ASK 1 958 1001800 7 683 999300 1003700 92
14:01:27 88 1234 BID : 362 999900} 8 768 999000 1005600 709
14:01:27 89 1234 ASK 5 709 1005600 9 853 998900 - -
14:01:28 90 1234 ASK 1 786 1001500 10 235 998700 - -
14:01:28 91 1234 ASK 4 0 1002600F
14:01:28 92 1234 ASK 4 92 1003700 Live orderbook state
14:01:28 93 1234 BID 1 671 1000000
14:01:28 94 1234 ASK 1 362 1001200
14:01:28 95 1234 BID 10 148 998300
14:01:28 96 1234 ASK 1 934 1000900
14:01:28 97 1234  NEW BID 1 274 1000100
14:01:28 98 1234 CHANGE BID 1 313 1000100
14:01:29 99 1234 NEW BID | 653 1000200
14:01:29 100 1234 NEW ASK 3 200 1001400

| gy s rea—— e T —
I Decoded Operation l

Figure 19 Live Feed Console

aat-ips-itch-ouch-instruction-amd -15 - © Design Gateway Co.,Ltd



DG

When the Alveo card receives live market data through the Live Feed session and is configured to use the on-card
pricing engine, it processes incoming market data and automatically submits orders when the selected trading
strategy conditions are met.

AAT IP Suite

4.4 Trading on Alveo Card

For this demo, the following two trading strategies are supported on the Alveo card:

e NONE: When this strategy is selected, the trading logic is disabled. The Alveo card only updates the internal
order book based on ITCH market data and does not submit any orders.

e PEG: The PEG (Pegged) strategy with offset is a price-following trading strategy implemented entirely in
hardware on the Alveo accelerator card. The strategy continuously monitors the top level of the order book (best
bid and best ask) decoded from the ITCH market data stream.

Instead of submitting orders at a fixed price, the order price is dynamically adjusted relative to current market
prices using a configurable offset.

When a change is detected at the top of the order book, the on-card pricing engine automatically recalculates
the target order price and submits a corresponding order through the OUCH interface.

- Sell-side behavior: When the best ask price changes, the Alveo card generates a sell order with the
following price: Sell Price = Best Ask — Offset

- Buy-side behavior: When the best bid price changes, the Alveo card generates a buy order with the
following price: Buy Price = Best Bid + Offset

The offset value is configurable and allows control over how aggressively the order is positioned relative to the
market. By continuously re-pegging orders to the best bid or best ask, the PEG strategy maintains a competitive
position in the order book while reacting to market movements with deterministic, ultra-low latency.

During demo execution, users can configure the trading strategy parameters from the aat-itch-ouch console using
the following command:

>> pricingengine setorderbookstrategy <symbol index> <strategy> [parameters0] [parameters1] ...
e <symbol index> : Symbol index to which the strategy is applied. This demo supports only index 0.
e <strategy> : Pricing engine strategy to use. Supported values: “none” or “peg”.
e Strategy parameters
- NONE : No parameters are required.
- PEG : Two parameters are required:
<price_offset> : Offset applied to the best bid or best ask when calculating the order price

<quantity> : Order quantity to be submitted

aat-ips-itch-ouch-instruction-amd -16 - © Design Gateway Co.,Ltd



AAT IP Suite

Host Console

>> orderbook readdata (aat-itch-ouch Console)

e R e R L R L e e R e L LR L +

| Symbol Index = 0 Il Timestamp = 0x0000000000000000 |

L AR LR R L L R L LR LD e R R e Rl +

| BID Il ASK |

e LR R R e el R R LR e AR EEEEE L +

| Quantity | Price I Price | Quantity |

e R e TR P LR -

| 500 | 1000000 | | 1000100 | 450 |

| 480 | 999500 | | 1000200 | 430 |

| 450 | 999000 || 1000300 | 400 |
Target Console#2 Target Console
(Live Feed Console) (Market Server Console)

- Order Entry Server
Market Data Tape
A . . . [10:27:48] New connection from 192.168.20.200
Time Seq OID Action Side Lvl Qty Price [10:28:15] Login Req: User=dgway
- — — [10:28:15] Sent: Login Accepted

10:29:13 1 1234 CHANGE ASK 1 415 1000100 [10:29:13] [ORD] BUY 800 @ 999550 (ID: OA)
10:29:13 2 1234 DELETE  BID 1 0 1000000 =™ | '110:29:14] [ORD] BUY 800 @ 999750 (ID: OA)
10:29:13 3 1234 HANGE ~ BID Looose 999500 [10:29:14] [ORD] BUY 800 @ 999550 (ID: OA)
10:29:14 4 1234  NEW BID 8 938 996200 7[10:29:14] [ORD] SELL 800 @ 999750 (ID: OA)
ig :g i: 5 i;:: NEW BID 1 ;319 ;:g;gg / [10:29:14] [ORD] BUY B00 @ 999050 (ID: OA)
Toi50i1s & P HANGE - BID ! ° 299700 [10:29:14] [ORD] SELL 800 @ 999450 (ID: OA)
Sl 7 4 __ DELETE __BID 1 - [10:29:15] [ORD] SELL 800 @ 999350 (ID: OA)
et g igg: gggaws g?g % g :gg:gg [10:29:15] [ORD] BUY 800 @ 999250 (ID: OA)
10:29:14 10 1234 HANGE  BID 8 248 996000
10:29:14 11 1234  NEW ASK 1 616 999500
10:29:14 12 1234 DELETE BID 6 0 996500
10:29:14 13 1234 "HANGE  ASK 6 365 1000400
10:29:15 14 1234 DELETE ASK 6 0 1000400
10:29:15 15 1234 CHANGE  ASK 8 336 1000700
10:29:15 16 1234 DELETE BID 7 0 996000
10:29:15 17 1234  NEW ASK 1 245 999400
10:29:15 18 1234 DELETE ASK 8 0 1000600
10:29:15 19 1234 CHANGE ASK 5 316 1000200
10:29:15 20 1234  NEW BID 1 253 999200

Figure 20 Test Result of PEG Strategy (price_offset=50 and quantity=800)

Figure 20 illustrates the results of the PEG strategy using the default parameters defined in trade_on_card.cfg
(price_offset = 50, quantity = 800).

Buy-side example

As shown in Figure 20 - Target Console#2 (Live Feed Console), when packet sequence number 2 (DELETE BID
Level 1) is received, the top level of the BID order book is updated. As a result, the Alveo card detects a change in
the best bid and triggers the PEG strategy.

The new buy order price is calculated using the updated best bid value from Level 2 of the snapshot table (999500),
increased by the configured price offset (50).

Accordingly, the Market Server console shows that a BUY order at 999550 (999500 + 50) is generated, as illustrated
in Figure 20 — Market Server Console.

Sell-side example

Later, when packet sequence number 8 (NEW ASK Level 1) is received, as shown in Figure 20 — Live Feed Console,
the top level of the ask order book is updated. The Alveo card detects this change and generates a sell order based
on the PEG strategy.

The sell order price is calculated from the received ask price (999800), decreased by the configured price offset (50).
As shown in Figure 20 - Target Console (Market Server Console), a SELL order at 999750 (999800 — 50) is generated.

aat-ips-itch-ouch-instruction-amd -17 - © Design Gateway Co.,Ltd



AAT IP Suite

Target Console#2
(Live Feed Console)

Host Console + :Input by user

>

F_;_;;;_E;;;;_ (aatdtch-ouch Console) [~ T 4 : Output to user

e mm e e e e e e e +
| Username dgway
Request Session

: Request SegNum 00000000000000000000
Login Stat LOGGED IN
——————————————————————————————— e
Num Login 1
Num Login 0
Num Sequenced Data M V]
Num End Of Snapshot Msg 0

| Num Unknown Msg 0
it o — +

Set new parameters to peg strategy

>Ipricinqenqine setstrategy 0 peg 75 100
DK

Target Console
(Market Server Console)

Market Data Tape

er Entry Server

[14:12:45] New connection from 192.168.20.200

Time Seq OID Action Side Lvl Qty Price [14:13:09] Login Req: User=dgway

[14:13:09] Sent: Login Accepted
14:15:44 1 1234 ASK 1 415 1000100 14:15:44] [ORD] BUY @ E23575] (1p: oa)
14:15:44 2 1234 BID 1 0 1000000 [14:15:45] [ORD] BUY 1§00 @ 99975 (ID: OA)
14:15:44 3 1234 BID 1 586 999500 [14:15:45] [ORD] BUY @ 999975 (ID: OA)
14:15:44 4 1234 BID 8 938 996200 [14:15:45] [ORD] SEL¥ 1000 @ 999725 (ID: OA)
14:15:45 5 1234 BID 1 899 999700 [14:15:45] [ORD] BUY 1000 @ 9990Y5 (ID: OA)
14:15:45 6 1234 BID 1 831 999700 [14:15:45] [ORD] SHLL 1000 @ 999425 (ID: OA)
14:15:45 7 1234 BID 1 0 999700 [14:15:46] [ORD] LL 1000 @ 999325 (ID: OA)
14:15:45 8 1234 ASK 1 776 999800 [14:15:46] [ORD] BUY 1000 @ 999276 (ID: OA)
14:15:45 9 1234 BID 1 0 999500
14:15:45 10 1234 BID 8 248 996000 - -
14:15:45 11 1234 ASK 1 616 999500 New quantity | | New price
14:15:45 12 1234 BID 6 0 996500
14:15:45 13 1234 ASK 6 365 1000400
14:15:45 14 1234 ASK 6 0 1000400
14:15:46 15 1234 ASK 8 336 1000700
14:15:46 16 1234 BID 7 0 996000
14:15:46 17 1234 ASK 1 245 999400
14:15:46 18 1234 ASK 8 0 1000600
14:15:46 19 1234 ASK 5 316 1000200
14:15:46 20 1234 BID 1 253 999200

Figure 21 Test Result of PEG Strategy (price_offset=75 and quantity=1000)

Figure 21 illustrates the results of the PEG strategy using the updated parameters (price offset = 75, quantity = 1000).
After applying the new offset and quantity settings, the trading behavior changes accordingly.

Compared with the buy-side example shown in Figure 20, when packet sequence number 2 is received, the Alveo
card generates a BUY order at 999575 (999500 + 75) with a quantity of 1000.

aat-ips-itch-ouch-instruction-amd

-18 - © Design Gateway Co.,Ltd



When the Alveo card is configured to use the host-based pricing engine, it forwards received market data to host
memory via PCle. The host software retrieves this data, processes it using the selected trading strategy, and
automatically generates orders when the strategy conditions are met. These orders are then sent back to the Alveo
card over PCle, and the Alveo card forwards them to the Market Server.

AAT IP Suite

4.5 Trading on Host Software

For this demo, the trading strategy implemented in the host software is a PEG-style algorithm with a price offset of
50 and an order quantity of 800. When identical strategy parameters are used, the trading results produced by the
host-based pricing engine match those generated by the on-card pricing engine. The primary difference lies in latency,
as the host-based approach introduces additional PCle transfer overhead.

This demo also includes a round-trip time (RTT) measurement feature to evaluate the latency of data transfers
between the Alveo card and the host system. To perform the latency measurement while the live market data feed is
active, execute the following command in the aat-itch-ouch console:

>> datamover timing

Figure 22 illustrates an example of the RTT measurement result. The measured latency depends on the host system
configuration and hardware capabilities.

Host Console +: Input by user

(aat-itch-ouch Console) ~ +: Output to user

S

{3
>> |datamover timing\ﬂ Display RTT information
Running for 10 seconds...please wait...

APP Clock Freq: 312.5 MHz

RTT Statistics:

RTT (Clock Cycles)
Max 1991 cycles
Min = 1249 cycles

, 4)
RTT (Microseconds) : ”TRTTinbnﬂaﬁon
Max = 6.37 us
Min = 4.00 us
Avg = 4.33 us
Sum = 34.64 us

Count = 8 packet (s)

Packet Statistics:

Number of RX Packets: 20
Number of TX Packets: 8

Figure 22 Round-Trip Time Measurement Result

aat-ips-itch-ouch-instruction-amd -19 - © Design Gateway Co.,Ltd



AAT IP Suite

5 Update Hardware via PCle

In certain deployment environments, remote hardware updates are required. The AAT-IPS for ITCH-OUCH system
includes a dedicated hardware module that supports FPGA configuration updates via PCle, eliminating the need for
a physical programming cable. This section describes the two main steps involved in this process: mcs file creation
and mcs file programming via PCle.

To program the mcs file over PCle, the "xbflash2" utility is required. The utility can be downloaded and installed by
following the instructions provided at the link below:

https://www.amd.com/en/products/accelerators/alveo/u250/a-u250-a64g-pa-g.html#tabs-ca1f6f6dc7-item-
2760c1c14c-tab

5.1 MCS File Creation

+: Input by user

+: Output to user
Ubuntu console I Open Vivado TCL console J/
tkas-user@dg-turnkeyl:~/AAT_ITCH-OUCH_Config_ X3522/download$ |source /tools/Xilinfolvado/ZOZZ,lfsettlngsé4.sh\\? j

tkas-user@dg-turnkeyl:~/AAT_ITCH-OUCH_Config_X3522/downloads$ |vivadc -mode tcl

*xxxxx Vivado v2022.1 (64-bit)
#*%* SW Build 3526262 on Mon Apr 18 15:47:01 MDT 2022
***% TP Build 3524634 on Mon Apr 18 20:55:01 MDT 2022
** Copyright 1986-2022 Xilinx, Inc. All Rights Reserved. I'e
4
Vivado% write_cfgmem -force -format mecs -interface spixd4 -size 256 -loadbit "up 0x01002000 AfAAT_TTéH_OUCH_XBBZE.bLt“
-file "./AAT_ITCH OUCH_X3522.mcs"
Command: write_cfgmem -force -format mecs —interface spix4 -size 256 -loadbit (up 0x01002000 ./AAT_ITCH_OQUCH_X3522.bit}
—-file ./AAT_ITCH_OUCH_X3522.mcs
Creating config memory files...
Creating bitstream lcad up from address 0x01002000
Loading bitfile ./AART_ITCH_OUCH_X3522.bit
Writing file ./AAT_ITCH_OUCH_X3522.mcs
Writing log file ./AAT_ITCH_OUCH_X352Z.prm

fJ\\npul write_cfgmem command
4 L

Configuration Memory information

File Format MCSs

Interface SPIX4

Size 256M

Start Address 0x00000000

End Address OxOFFFFFFF

Addrl Addr2 Date File(s)

0x01002000 0x032FCTFB Dec 3 09:50:58 2025 ./RAT_ITCH_OUCH_X3522.bit

0 Infos, 0 Warnings, 0 Critical Warnings and 0 Errors encountered.
write_cfgmem completed successfully

J
5
Display siatus result of mcs file 7“)

Figure 23 MCS File Creation
1) Open the Vivado Tcl console using the following command:
>> vivado -mode tcl
2) Execute the following command to generate the mcs file from the bitstream:

>> write_cfgmem -force -format mcs -interface spix4 -size 256 -loadbit “up 0x01002000 <input_file.bit>" -file
“output_file.mcs”

3) Upon successful completion, the Vivado console displays “write cfgmem completed successfully” message,
confirming that the mcs file has been created successfully.

aat-ips-itch-ouch-instruction-amd - 20 - © Design Gateway Co.,Ltd


https://www.amd.com/en/products/accelerators/alveo/u250/a-u250-a64g-pq-g.html#tabs-ca1f6f6dc7-item-2760c1c14c-tab
https://www.amd.com/en/products/accelerators/alveo/u250/a-u250-a64g-pq-g.html#tabs-ca1f6f6dc7-item-2760c1c14c-tab

1) Before downloading the mcs via PCle, verify that the Alveo card is not bound to the vfio-pci driver. Use the
following command to check the current device binding status:

AAT IP Suite

5.2 MCS File Programming via PCle

>> sudo dpdk-devbind.py -s

4 Input by user
4 Qutput to user

Ubuntu console
tkas—user@dg—turnkeyl:~5Isudo dpdk-devbind.py —s)/é
1}

i Get status of all device

Figure 24 Check Bind Device Bound Status Using DPDK Command

2) Check the binding status of the device displayed on the console. Ensure that the Alveo device is unbound from
the vfio-pci driver before proceeding.

a) If the device is unbound, it appears under the “Other Network Devices” section, as shown in Figure 25.

Ubuntu console

Network devices using kernel driver

0000:06:00.0 'AQC1l07 NBase-T/IEEE 802.3bz Ethernet Controller [AQtion] d107' if=
eth0 drv=atlantic unused=vfio-pci *Active*

0000:01:00.0 'Device 9048' unused=vfio-pci The hardware is under
0000:07:00.0 'Device 2725' unused=iwlwifi,viio-pci | OtherNetwork devices’group.

No 'Baseband' devices detected

Figure 25 Device Unbound from 'vfio-pci' Driver

b) If the device is bound to the vfio-pci driver, it appears under the “Network devices using DPDK-compatible
driver” section, as shown in Figure 26. In this case, unbind the device using the following command:

>> sudo dpdk-devbind.py -u 01:00.0

aat-ips-itch-ouch-instruction-amd -21- © Design Gateway Co.,Ltd



AAT IP Suite

PDK-compatible driver

®)

0000:01:00.0 'Device 9048' drv=vfio-pci unused= The hardware is under Network devices
using DPDK-compatible driver group.

Network devices using kernel driver

0000:06:00.0 'AQC1l07 NBase-T/IEEE 802.3bz Ethernet Controller [AQtion] d107' if=
eth0 drv=atlantic unused=vfio-pci *Active*

Other Network devices

0000:07:00.0 'Device 2725' unused=iwlwifi,vfio-pci

No 'Baseband' devices detected

No 'Crypto' devices detected

No 'Regex' devices detected .
- (20)
tkas-user@dg-turnkeyl: ~$|sudo dpdk-devbind.py -u 01:00. O\l_‘/Unbind the DPDK from Hardware

Figure 26 Device Bound to 'vfio-pci' Driver
3) Execute the “xbflash2” utility with root permissions to program the mcs file via PCle using the following command:
>> sudo xbflash2 program --spi --image <target_mcs_file>.mcs --bar 2 --bar-offset 0x80000 -d <BDF>

Note: The parameters “bar” and “bar-offset” are specific to the default AAT-IPS for ITCH-OUCH demo design. If
the card is programmed with a non-default hardware configuration, these parameters may need to be adjusted
accordingly.

4) When prompted, enter Y’ to confirm the programming operation.

5) Wait for the following message to appear on the console, indicating that programming has completed: “Cold
reboot machine to load the new image on device”.

6) Perform a cold reboot of the system. After rebooting, the new hardware configuration is permanently applied to
the Alveo card.

+: Input by user
Ubuntu console | Execute xbflash2 to download@ +: Output to user

tkas—user@dg-turnkeyl:~/AAT_ITCH-OUCH_Config_X3522/download$§| sudc xbflashZ program —--spi —--image ./AAT_ITCH_OUCH_X3522.mcs
—-—bar 2 --bar-offset 0x80000 -d 01:00.0

Preparing to program flash on device: Ol:Oi 4 )InpUtEYITO start operation
Are you sure you wish to proceed? [Y/n] :
flashing via QSPI controller located at Ux80000 on BAR2

NEO: ***Found 5ZZ ELA Records

Enabled bitstream guard. Bitstream will not be loaded until flashing is finished.
Preparing flash chip 0

Erasing flash....veeeiveesnsnsnrnnnanns

Programming flash......ciiiiiiiiiininnnnaas

Cleared bitstream guard. Bitstream now active.

R B

[Cold reboot machine to load the new image on device.
R E e R R e R R R R RS

5
Display message after finishing flash programming

Figure 27 “xbflash2” Programming

aat-ips-itch-ouch-instruction-amd -22 - © Design Gateway Co.,Ltd



AAT IP Suite

6 Revision History

Revision

Date (D-M-Y)

Description

1.00

26-Jan-26

Initial version release

aat-ips-itch-ouch-instruction-amd

-23-

© Design Gateway Co.,Ltd



